Bioremediation of chromium(VI) by Stenotrophomonas maltophilia isolated from tannery effluent
Bioremediation of chromates using bacteria primarily involves the removal/reduction of heavy metals in effluent using indigenous micro-organisms such as chromium reducing bacteria as biosorbents for cleaner and healthier environment. In the present study, the removal of hexavalent chromium by micro-...
Gespeichert in:
Veröffentlicht in: | International journal of environmental science and technology (Tehran) 2018, Vol.15 (1), p.207-216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bioremediation of chromates using bacteria primarily involves the removal/reduction of heavy metals in effluent using indigenous micro-organisms such as chromium reducing bacteria as biosorbents for cleaner and healthier environment. In the present study, the removal of hexavalent chromium by micro-organisms isolated from acclimatized tannery effluent was investigated. Biochemical assays and molecular sequencing revealed strain SRS05 to be
Stenotrophomonas maltophilia.
Resistance to chromium was determined by agar and broth dilution assays followed by determination of minimal inhibitory concentration. Strain SRS05 was able to resist 400 mg/ml of chromium which reflects that the heavy metal could be utilized by the micro-organism for its growth. Results by atomic absorption spectroscopy, Fourier transform infrared spectroscopic analysis and scanning electron microscopy revealed effective biosorption of chromium by
S. maltophilia
SRS05 with no intracellular changes morphologically indicating the stability of the organism in the presence of chromium. It is therefore recommended that this bacterium can be used widely for remediation of hexavalent chromium although the genetic basis for observations concluded in this study is to be confirmed. |
---|---|
ISSN: | 1735-1472 1735-2630 |
DOI: | 10.1007/s13762-017-1378-z |