Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties

In this study, we have prepared a series of novel biodegradable polymer [polylactide (PLA)]-based nanocomposites using graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWCNTs) by solution-blending technique and investigated their morphologies, structures, thermal stabilities, mechanical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian polymer journal 2012-02, Vol.21 (2), p.109-120
Hauptverfasser: Duan, Jingkuan, Shao, Shuangxi, Ya-Li, Wang, Linfeng, Jiang, Pingkai, Liu, Baiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we have prepared a series of novel biodegradable polymer [polylactide (PLA)]-based nanocomposites using graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWCNTs) by solution-blending technique and investigated their morphologies, structures, thermal stabilities, mechanical and dielectric properties, and electrical and thermal conductivities. Before preparation of the PLA/GNs/MWCNTs nanocomposites, the raw GNs used were endured a rapid expansion by thermal treatment. Temperature of this treatment had some obvious impacts on morphological changes of graphite nanosheets which were verified by means of scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques. Resultant nanocomposites were characterized and evaluated by means of SEM, XRD, thermal conductivity measurements, tensile and impact tests, thermogravimetric analysis and dielectric measurements. Results obtained in this study indicated that thermal-expanded GNs in the presence of MWCNTs facilitate the formation of an appropriate conductive network in PLA matrix which resulted in a relatively low percolation threshold for thermal and electrical conductions of PLA/GNs/MWCNTs nanocomposites. Significant improvements in thermal and electrical conductivities, thermal stability and mechanical properties of PLA/GNs/MWCNTs nanocomposites obtained through the presence of both nanoparticles in PLA matrix were associated with their good co-dispersion and co-reinforcement effects. The macroscopic properties of nanocomposites were found to be strongly dependent on their components, concentrations, dispersion, and the resulted morphological structures.
ISSN:1026-1265
1735-5265
DOI:10.1007/s13726-011-0008-8