Capparis zeylanica-mediated Ag/ZnO nanoparticles and their antiproliferative efficacy via nuclear apoptosis
Nanobiotechnology has been emerging as an interesting scientific branch holds its applicability in biology, medicine etc. Exploiting the capacity of biogenic metal nanoparticles in areas like biomedicine and therapeutics with peculiarities such as eco-friendly, cheap and biocompatible, the green syn...
Gespeichert in:
Veröffentlicht in: | Advances in traditional medicine (Online) 2024-09, Vol.24 (3), p.935-946 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanobiotechnology has been emerging as an interesting scientific branch holds its applicability in biology, medicine etc. Exploiting the capacity of biogenic metal nanoparticles in areas like biomedicine and therapeutics with peculiarities such as eco-friendly, cheap and biocompatible, the green synthesized bimetallic nanopaticles, silver-zinc oxide nanopaticles (Ag–ZnO NPs), were chosen to find out their anticancer properties. Herein, the Ag–ZnO NPs were fabricated by using the leaf extract of
Capparis zeylanica
(
C. zeylanica
) plant. Further, the Ag–ZnO NPs were subjected to characterization, and they were tested for their anticancer potential on the breast cancer cells, MDA-MB-231.The cell viability study implied that the IC
50
value of MDA-MB-231 cells was 43.46 ± 2.56, achieved at a 10 μg/ml concentration of Ag–ZnO NPs. The NPs-treated cancer cells exhibited the ROS-mediated apoptotic changes that were visualized through fluorescent microscopic images using acridine orange/ethydium bromide (AO/EB) staining, 4′,6-diamidino-2-phenylindole (DAPI), and propidium iodide (PI) staining. The findings of the current study point out that the green Ag–ZnO NPs seem to be an efficient anticancer agent. |
---|---|
ISSN: | 2662-4052 2662-4060 |
DOI: | 10.1007/s13596-024-00752-3 |