Bayesian Model Selection for Longitudinal Count Data

We explore the performance of three popular model-selection criteria for generalised linear mixed-effects models (GLMMs) for longitudinal count data (LCD). We focus on evaluating the conditional criteria (given the random effects) versus the marginal criteria (averaging over the random effects) in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sankhyā. Series B (2008) 2022-11, Vol.84 (2), p.516-547
Hauptverfasser: Ariyo, Oludare, Lesaffre, Emmanuel, Verbeke, Geert, Quintero, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the performance of three popular model-selection criteria for generalised linear mixed-effects models (GLMMs) for longitudinal count data (LCD). We focus on evaluating the conditional criteria (given the random effects) versus the marginal criteria (averaging over the random effects) in selecting the appropriate data-generating model. We advocate the use of marginal criteria, since Bayesian statisticians often use the conditional criteria despite previous warnings. We discuss how to compute the marginal criteria for LCD by a replication method and importance sampling algorithm. Besides, we show via simulations to what extent we err when using the conditional criteria instead of the marginal criteria. To promote the usage of the marginal criteria, we developed an R function that computes the marginal criteria for longitudinal models based on samples from the posterior distribution. Finally, we illustrate the advantages of the marginal criteria on a well-known data set of patients who have epilepsy.
ISSN:0976-8386
0976-8394
DOI:10.1007/s13571-021-00268-9