Principal curves to fractional m-Laplacian systems and related maximum and comparison principles
In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m -Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in t...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2024-08, Vol.27 (4), p.1948-1971 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional
m
-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain
Ω
⊂
R
N
are also proved. As application, we measure explicitly how small has to be
diam
(
Ω
)
so that weak and strong maximum principles associated to this problem hold in
Ω
. |
---|---|
ISSN: | 1311-0454 1314-2224 |
DOI: | 10.1007/s13540-024-00293-1 |