Principal curves to fractional m-Laplacian systems and related maximum and comparison principles

In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m -Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2024-08, Vol.27 (4), p.1948-1971
Hauptverfasser: de Araujo, Anderson L. A., Leite, Edir J. F., Medeiros, Aldo H. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m -Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain Ω ⊂ R N are also proved. As application, we measure explicitly how small has to be diam ( Ω ) so that weak and strong maximum principles associated to this problem hold in Ω .
ISSN:1311-0454
1314-2224
DOI:10.1007/s13540-024-00293-1