For a class of p(x)-biharmonic operators with weights
We study the fourth order nonlinear problem with a p ( x )-biharmonic operators Δ ( | Δ u | p 1 ( x ) - 2 Δ u ) + Δ ( | Δ u | p 2 ( x ) - 2 Δ u ) = λ V 1 ( x ) | u | q ( x ) - 2 u - μ V 2 ( x ) | u | α ( x ) - 2 u , x ∈ Ω u = Δ u = 0 , x ∈ ∂ Ω where Ω ∈ R N with N ≥ 2 is a bounded domain with smooth...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2019-04, Vol.113 (2), p.1557-1570 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the fourth order nonlinear problem with a
p
(
x
)-biharmonic operators
Δ
(
|
Δ
u
|
p
1
(
x
)
-
2
Δ
u
)
+
Δ
(
|
Δ
u
|
p
2
(
x
)
-
2
Δ
u
)
=
λ
V
1
(
x
)
|
u
|
q
(
x
)
-
2
u
-
μ
V
2
(
x
)
|
u
|
α
(
x
)
-
2
u
,
x
∈
Ω
u
=
Δ
u
=
0
,
x
∈
∂
Ω
where
Ω
∈
R
N
with
N
≥
2
is a bounded domain with smooth boundary,
λ
,
μ
are positive real numbers,
p
1
,
p
2
,
q
and
α
are continuous functions on
Ω
¯
,
V
1
and
V
2
are weight functions in a generalized Lebesgue spaces
L
s
1
(
x
)
(
Ω
)
and
L
s
2
(
x
)
(
Ω
)
respectively such that
V
1
may change sign in
Ω
and
V
2
≥
0
on
Ω
. We established an existence results using variational approaches and Ekeland’s variational principle. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-018-0567-z |