Backward doubly stochastic differential equation driven by Lévy process: a Comparison theorem

In this work we deal with a Backward doubly stochastic differential equation associated to a Poisson random measure. We establish a comparison theorem and prove existence of a minimal solution under weaker conditions on the coefficients.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica 2014-12, Vol.25 (4), p.869-880
Hauptverfasser: Faye, Ibrahima, Sow, Ahmadou Bamba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we deal with a Backward doubly stochastic differential equation associated to a Poisson random measure. We establish a comparison theorem and prove existence of a minimal solution under weaker conditions on the coefficients.
ISSN:1012-9405
2190-7668
DOI:10.1007/s13370-013-0156-4