Mechanical and Environmental Analysis of Granular Subbase with Fine Crumb Rubber
The increasing manufacturing of tires, driven by the automotive sector, has led to various sustainability and waste management issues. Consequently, it is necessary to explore alternatives for the reuse of these wastes. Rubber has demonstrated properties that could make it an attractive material for...
Gespeichert in:
Veröffentlicht in: | Arabian journal for science and engineering (2011) 2024-10, Vol.49 (10), p.14389-14401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The increasing manufacturing of tires, driven by the automotive sector, has led to various sustainability and waste management issues. Consequently, it is necessary to explore alternatives for the reuse of these wastes. Rubber has demonstrated properties that could make it an attractive material for use as a granular aggregate. The aim of this study is to evaluate the influence of crumb rubber (CR) on the mechanical behavior of a granular subbase (GSB) by replacing fine CR at 10% and 15%. An environmental analysis of the proposal was conducted using the SimaPro tool, and a series of laboratory tests were performed to assess physical and mechanical characteristics. The strength results indicate a decreasing trend as the CR content in the GSB increases. Specifically, in abrasion tests, the natural material showed an average result of 30.86%, while the mixes with 10% and 15% CR exceeded the maximum limit (50%), achieving results of 59.24% and 53.98%, respectively. In terms of the California Bearing Ratio (CBR), only the natural samples compacted at maximum energy exceeded the minimum requirements for low and medium traffic levels (30%). The highest CBR value for samples containing CR was 5%, whereas the natural GSB reached a maximum CBR of 33%. A similar trend is observed in environmental outcomes, with increases of up to 17% in abiotic depletion for the sample with 15% CR. Overall, the environmental analysis suggests that incorporating CR into the GSB could lead to an increase in various environmental impacts. |
---|---|
ISSN: | 2193-567X 2191-4281 |
DOI: | 10.1007/s13369-024-09041-2 |