Thermally Reduced Graphene Oxide-Reinforced Acrylonitrile Butadiene Styrene Composites Developed by Combined Solution and Melt Mixing Method

Graphene is a potential reinforcing material for polymeric materials due to high aspect ratio, surface area and electrical and mechanical properties. In this work, thermally reduced graphene oxide (TRGO)/acrylonitrile butadiene styrene (ABS) composites were developed using combined solution mixing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2020-11, Vol.45 (11), p.9559-9568
Hauptverfasser: Raza, Mohsin Ali, Maqsood, Muhammad Faheem, Rehman, Zaeem Ur, Westwood, Aidan, Inam, Aqil, Sattar, Mian Muhammad Sohaib, Ghauri, Faizan Ali, Ilyas, Muhammad Tasaduq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene is a potential reinforcing material for polymeric materials due to high aspect ratio, surface area and electrical and mechanical properties. In this work, thermally reduced graphene oxide (TRGO)/acrylonitrile butadiene styrene (ABS) composites were developed using combined solution mixing and melt mixing techniques. The effect of wt% of pristine graphite and TRGO on the mechanical and thermal properties of composites was studied. Graphene oxide (GO) was prepared from graphite powder using improved Hummers’ method followed by thermal reduction to obtain TRGO. Characterization of GO, TRGO and as-developed ABS composites was performed using Fourier transmission infrared spectroscopy, scanning electron microscopy, atomic force microscopy, differential scanning calorimetry and thermogravimetric analysis. Tensile properties were determined by testing injection-molded dumbbell-shaped samples. The results showed that tensile properties of TRGO/ABS composites increased significantly at 0.2 wt% loading compared to corresponding graphite/ABS composites. However, increased content of both fillers decreased mechanical properties of the composites. TRGO, at 0.2 wt% loading, increased glass transition temperature of ABS by ca.7 °C. TRGO neither increased nor decreased thermal stability of ABS composites. This study showed that combined solution and melt mixing technique can significantly improve dispersion of TRGO in ABS matrix.
ISSN:2193-567X
2191-4281
DOI:10.1007/s13369-020-04845-4