Electrochemical Process for Diazinon Removal from Aqueous Media: Design of Experiments, Optimization, and DLLME-GC-FID Method for Diazinon Determination
In the present study, electrochemical process was studied via removal of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) as an insecticide/ acaricide organic case study. Influences of three operational parameters including initial ferrous ion concentration, initial hydro...
Gespeichert in:
Veröffentlicht in: | Arabian Journal for Science and Engineering 2015-11, Vol.40 (11), p.3041-3046 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, electrochemical process was studied via removal of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) as an insecticide/ acaricide organic case study. Influences of three operational parameters including initial ferrous ion concentration, initial hydrogen peroxide concentration, and initial diazinon concentration were measured and optimized in diazinon removal process. Response surface methodology (RSM) was used to design the experiments. The experimental data collected in a laboratory-scaled batch reactor equipped with four graphite bar electrodes as cathode and an aluminum sheet electrode as an anode. Quantitative analysis of diazinon was done with gas chromatography equipped with flame photometric detector. Disperse liquid–liquid microextraction was used prior to gas chromatography in order to extraction and preconcentration of diazinon from aqueous media to extraction phase. Acetone and chlorobenzene were used as disperser and extraction solvent, respectively. Maximum diazinon removal efficiency of 87% (0.85mg mass removal) in
C
0
of 2mg/L and 80% (120mg mass removal) in
C
0
of 300mg/L was achieved under different experimental conditions. The obtained experimental data were used for model building by RSM approach. Finally, optimization process was carried out using RSM algorithm. |
---|---|
ISSN: | 1319-8025 2191-4281 |
DOI: | 10.1007/s13369-015-1798-3 |