A specific model of Hilbert geometry on the unit disc

A new metric on the open 2-dimensional unit disk is defined making it a geodesically complete metric space whose geodesic lines are precisely the Euclidean straight lines. Moreover, it is shown that the unit disk with this new metric is not isometric to any hyperbolic model of constant negative curv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beiträge zur Algebra und Geometrie 2023-11
Hauptverfasser: Charitos, Charalampos, Papadoperakis, Ioannis, Tsapogas, Georgios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new metric on the open 2-dimensional unit disk is defined making it a geodesically complete metric space whose geodesic lines are precisely the Euclidean straight lines. Moreover, it is shown that the unit disk with this new metric is not isometric to any hyperbolic model of constant negative curvature, nor to any convex domain in $$\mathbb {R}^2$$ R 2 equipped with its Hilbert metric.
ISSN:0138-4821
2191-0383
DOI:10.1007/s13366-023-00721-y