Efficacy of a Zn-based metalorganic framework doped with benznidazole on acute experimental Trypanosoma cruzi infection

Metal-Organic Frameworks (MOFs) have been shown to enhance the activity of encapsulated compounds by facilitating their passage across cell membranes, thereby enabling controlled and selective release. This study investigates the efficacy of BNZ@Zn-MOFs against the acute phase of Trypanosoma cruzi i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug delivery and translational research 2024-07
Hauptverfasser: Sosa-Arroniz, Anahí, López-Monteon, Aracely, Peña-Rodríguez, Rodolfo, Rivera-Villanueva, José María, Torres-Montero, Jesus, Ramos-Ligonio, Angel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal-Organic Frameworks (MOFs) have been shown to enhance the activity of encapsulated compounds by facilitating their passage across cell membranes, thereby enabling controlled and selective release. This study investigates the efficacy of BNZ@Zn-MOFs against the acute phase of Trypanosoma cruzi infection in a mouse model. The particles were synthesized by electroelution (EL), doped with BZN via mechanochemistry, and characterized using scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and X-ray diffraction (XRD). BNZ@Zn-MOFs released 80% of the encapsulated BZN within 3 h, demonstrating no cytotoxicity in NIH-3T3 and HeLa cells. Furthermore, in a model of acute experimental T. cruzi-infection in BALB/c mice, the delivery system exhibited antiparasitic activity at a significantly lower BZN concentration compared to free BZN treatment. PCR analysis of treated mice revealed no parasite DNA in their tissues, and hematoxylin-eosin staining showed no apparent damage to tissue architecture. Additionally, serum levels of liver function enzymes remained unchanged, indicating no adverse effects on liver function. This delivery system, utilizing suboptimal BZN doses, enables the preservation of drug activity while potentially facilitating a substantial decrease in side effects associated with Chagas disease treatment.
ISSN:2190-393X
2190-3948
DOI:10.1007/s13346-024-01664-0