Fekete–Szegö problem for Bavrin’s functions and close-to-starlike mappings in $${\mathbb {C}}^{n}
The paper is devoted to the study of a family of complex-valued holomorphic functions and a family of holomorphic mappings in $${\mathbb {C}}^{n}.$$ C n . More precisely, the article concerns a Bavrin’s family of functions defined on a bounded complete n -circular domain $${\mathcal {G}}$$ G of $${\...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2022-08, Vol.12 (4), Article 103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper is devoted to the study of a family of complex-valued holomorphic functions and a family of holomorphic mappings in
$${\mathbb {C}}^{n}.$$
C
n
.
More precisely, the article concerns a Bavrin’s family of functions defined on a bounded complete
n
-circular domain
$${\mathcal {G}}$$
G
of
$${\mathbb {C}}^{n}$$
C
n
and a family of biholomorphic mappings on the Euclidean open unit ball in
$${\mathbb {C}}^{n}.$$
C
n
.
The presented results include some estimates of a combination of the Fréchet differentials at the point
$$z=0,$$
z
=
0
,
of the first and second order for Bavrin’s functions, also of the second and third order for biholomorphic close-to-starlike mappings in
$${\mathbb {C}}^{n},$$
C
n
,
respectively. These bounds give a generalization of the Fekete–Szegö coefficients problem for holomorphic functions of a complex variable on the case of holomorphic functions and mappings of several variables. |
---|---|
ISSN: | 1664-2368 1664-235X |
DOI: | 10.1007/s13324-022-00714-5 |