A Riemann jump problem for biharmonic functions in fractal domains

Biharmonic functions are the solutions of the fourth order partial differential equation Δ Δ ω = 0 . The purpose of this paper is to solve a kind of Riemann boundary value problem for biharmonic functions assuming higher order Lipschitz boundary data. We approach this problem making use of generaliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2021-03, Vol.11 (1), Article 22
1. Verfasser: Blaya, Ricardo Abreu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biharmonic functions are the solutions of the fourth order partial differential equation Δ Δ ω = 0 . The purpose of this paper is to solve a kind of Riemann boundary value problem for biharmonic functions assuming higher order Lipschitz boundary data. We approach this problem making use of generalized Teodorescu transforms for obtaining the explicit expression of its solution in a Jordan domain Ω ⊂ R 2 with fractal boundary.
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-020-00469-x