Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation

With the Hirota bilinear method and symbolic computation, we investigate the ( 3 + 1 ) -dimensional generalized Kadomtsev–Petviashvili equation. Based on its bilinear form, the bilinear Bäcklund transformation is constructed, which consists of four equations and five free parameters. The Pfaffian, W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2021-03, Vol.11 (1), Article 4
Hauptverfasser: He, Xue-Jiao, Lü, Xing, Li, Meng-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the Hirota bilinear method and symbolic computation, we investigate the ( 3 + 1 ) -dimensional generalized Kadomtsev–Petviashvili equation. Based on its bilinear form, the bilinear Bäcklund transformation is constructed, which consists of four equations and five free parameters. The Pfaffian, Wronskian and Grammian form solutions are derived by using the properties of determinant. As an example, the one-, two- and three-soliton solutions are constructed in the context of the Pfaffian, Wronskian and Grammian forms. Moreover, the triangle function solutions are given based on the Pfaffian form solution. A few particular solutions are plotted by choosing the appropriate parameters.
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-020-00414-y