Relative operator entropy related with the spectral geometric mean
We consider the relative operator entropy constructed by the spectral geometric mean and see its properties analogous to those of the Tsallis relative operator entropy by the usual geometric mean. Furthermore, we define the quantum relative entropy constructed by the spectral geometric mean and deri...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2015-09, Vol.5 (3), p.233-240 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the relative operator entropy constructed by the spectral geometric mean and see its properties analogous to those of the Tsallis relative operator entropy by the usual geometric mean. Furthermore, we define the quantum relative entropy constructed by the spectral geometric mean and derive its subadditivity under tensor product. |
---|---|
ISSN: | 1664-2368 1664-235X |
DOI: | 10.1007/s13324-015-0099-z |