On the asymptotic risk of ridge regression with many predictors

This work is concerned with the properties of the ridge regression where the number of predictors p is proportional to the sample size n . Asymptotic properties of the means square error (MSE) of the estimated mean vector using ridge regression is investigated when the design matrix X may be non-ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2024-09, Vol.55 (3), p.1040-1054
Hauptverfasser: Balasubramanian, Krishnakumar, Burman, Prabir, Paul, Debashis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is concerned with the properties of the ridge regression where the number of predictors p is proportional to the sample size n . Asymptotic properties of the means square error (MSE) of the estimated mean vector using ridge regression is investigated when the design matrix X may be non-random or random. Approximate asymptotic expression of the MSE is derived under fairly general conditions on the decay rate of the eigenvalues of X T X when the design matrix is nonrandom. The value of the optimal MSE provides conditions under which the ridge regression is a suitable method for estimating the mean vector. In the random design case, similar results are obtained when the eigenvalues of E [ X T X ] satisfy a similar decay condition as in the non-random case.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-024-00646-9