Fourier coefficients of forms of CM-type
Let f be a cuspidal normalized eigenform of weight ≥ 2 for Г 0 ( N ),with Fourier expansion While the Galois representations associated to f can be used effectively to study the divisibility properties of the Fourier coefficients, it is very difficult to analyze the condition a f ( p ) = 0 (mod p )....
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2014-10, Vol.45 (5), p.747-758 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
f
be a cuspidal normalized eigenform of weight ≥ 2 for Г
0
(
N
),with Fourier expansion
While the Galois representations associated to
f
can be used effectively to study the divisibility properties of the Fourier coefficients, it is very difficult to analyze the condition
a
f
(
p
) = 0 (mod
p
). In this paper, we show that the problem is accessible in the case that
f
has complex multiplication. Under some mild conditions on
f
, we show that for
p
sufficiently large,
a
f
(
p
) = 0 (mod
p
) in fact implies that
a
f
(
p
) = 0. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-014-0086-3 |