Fourier coefficients of forms of CM-type

Let f be a cuspidal normalized eigenform of weight ≥ 2 for Г 0 ( N ),with Fourier expansion While the Galois representations associated to f can be used effectively to study the divisibility properties of the Fourier coefficients, it is very difficult to analyze the condition a f ( p ) = 0 (mod p )....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2014-10, Vol.45 (5), p.747-758
Hauptverfasser: Laptyeva, N., Kumar Murty, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f be a cuspidal normalized eigenform of weight ≥ 2 for Г 0 ( N ),with Fourier expansion While the Galois representations associated to f can be used effectively to study the divisibility properties of the Fourier coefficients, it is very difficult to analyze the condition a f ( p ) = 0 (mod p ). In this paper, we show that the problem is accessible in the case that f has complex multiplication. Under some mild conditions on f , we show that for p sufficiently large, a f ( p ) = 0 (mod p ) in fact implies that a f ( p ) = 0.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-014-0086-3