Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations

This article reviews an emerging field that aims for autonomous reinforcement learning (RL) directly on sensor-observations. Straightforward end-to-end RL has recently shown remarkable success, but relies on large amounts of samples. As this is not feasible in robotics, we review two approaches to l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KI. Künstliche Intelligenz (Oldenbourg) 2015-11, Vol.29 (4), p.353-362
Hauptverfasser: Böhmer, Wendelin, Springenberg, Jost Tobias, Boedecker, Joschka, Riedmiller, Martin, Obermayer, Klaus
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article reviews an emerging field that aims for autonomous reinforcement learning (RL) directly on sensor-observations. Straightforward end-to-end RL has recently shown remarkable success, but relies on large amounts of samples. As this is not feasible in robotics, we review two approaches to learn intermediate state representations from previous experiences: deep auto-encoders and slow-feature analysis . We analyze theoretical properties of the representations and point to potential improvements.
ISSN:0933-1875
1610-1987
DOI:10.1007/s13218-015-0356-1