Current trends in myxobacteria research

Myxobacteria are fascinating Gram-negative bacteria whose life cycle includes the formation of multicellular fruiting bodies that contain about 100,000 cells differentiated as asexual spores for their long-term survival. They move by gliding on surfaces, an activity that helps them carry out their p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of microbiology 2016-03, Vol.66 (1), p.17-33
Hauptverfasser: Wrótniak-Drzewiecka, Wioletta, Brzezińska, Anna Joanna, Dahm, Hanna, Ingle, Avinash P, Rai, Mahendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myxobacteria are fascinating Gram-negative bacteria whose life cycle includes the formation of multicellular fruiting bodies that contain about 100,000 cells differentiated as asexual spores for their long-term survival. They move by gliding on surfaces, an activity that helps them carry out their primitive kind of multicellular development. Myxobacteria have multiple traits that are clearly social in nature; they move and feed socially. These processes require specific intercellular signals, thereby exhibiting a sophisticated level of the inter-organismal communication. Myxobacteria are predators. Predation is social not only with respect to searching for prey (motility) but also in the killing of prey. Swarming groups of cells secrete antibiotics and bacteriolytic compounds that kill and lyse their prey, and food is thereby released. Since the last three decades, myxobacteria are known as valuable producers of secondary metabolites exhibiting various biological activities. Myxobacterial metabolites exhibit many unique structural features as well as rare or novel modes of action, making them attractive lead structures for drug development. Both genome sequencing and metabolic profiling of myxobacterial strains suggest that the diversity of myxobacterial secondary metabolism is far greater than previously appreciated. The present review discusses the structure, cytology, physiology, and ecology of myxobacteria, as well as their secondary metabolite production and social interactions.
ISSN:1590-4261
1869-2044
DOI:10.1007/s13213-015-1104-3