Biosurfactant production by AL 1.1, a Bacillus licheniformis strain isolated from Antarctica: production, chemical characterization and properties
Biosurfactants are of great interest due to the demand for natural products with low toxicity. Nevertheless, their production is not competitive when cost is a limiting factor. Strain AL 1.1, isolated on Deception Island (Antarctica), identified as Bacillus licheniformis, produced lipopeptides when...
Gespeichert in:
Veröffentlicht in: | Annals of microbiology 2015-12, Vol.65 (4), p.2065-2078 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biosurfactants are of great interest due to the demand for natural products with low toxicity. Nevertheless, their production is not competitive when cost is a limiting factor. Strain AL 1.1, isolated on Deception Island (Antarctica), identified as Bacillus licheniformis, produced lipopeptides when grown using a variety of carbohydrates. Biosurfactant production, but not growth, was optimal at 30 °C. The culture conditions and medium composition dictated biosurfactant production. Basic optimization of culture and extraction parameters gave a production yiels of 860 mg/L purified extract in 24 h. The purified biosurfactant yielded a mixture of lipopeptide homologues, with molecular weights between 1006 and 1034. The peptide moiety consists of glutamine as the N-terminal amino acid, two leucines, valine, aspartic, leucine and isoleucine as the C-terminal amino acid. The lipid moiety contains a mixture of β-hydroxy fatty acids ranging in size from C₁₄ to C₁₆. These results indicate a similarity with lichenysin groups A, D or G. The organic extract reduced surface tension to 28.5 mN/m and achieved a critical micelle concentration of 15 mg/L. This highly effective and efficient behavior characterized the product as a powerful surfactant. Its stability under a wide pH range, high temperatures and variable concentrations of salt, as well as its emulsifying properties, suggest potential application in cosmetic industrial processes. |
---|---|
ISSN: | 1590-4261 1869-2044 |
DOI: | 10.1007/s13213-015-1045-x |