Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues
Microbial extracts continue to be a productive source of new molecules with biotechnological importance. Fungi of the genus Penicillium are known to produce biologically active secondary metabolites. The goal of this work is verify the production of antimicrobial metabolites by Penicillium chrysogen...
Gespeichert in:
Veröffentlicht in: | Annals of microbiology 2013-06, Vol.63 (2), p.771-778 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial extracts continue to be a productive source of new molecules with biotechnological importance. Fungi of the genus Penicillium are known to produce biologically active secondary metabolites. The goal of this work is verify the production of antimicrobial metabolites by Penicillium chrysogenum IFL1 using agro-industrial residues. P. chrysogenum IFL1 produced active metabolites growing on the agro-industrial residues, grape waste and cheese whey. The 7-day cultures showed antimicrobial activities against bacteria, fungi and amoebae. The filtrate of the cheese whey culture inhibited the growth of the bacteria Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa, the fungus Fusarium oxysporum and the amoeba Acanthamoeba polyphaga. Due to the greater antimicrobial activity of the cheese whey culture, a footprinting profile was carried out using the ESI-MS and ESI-MS/MS techniques. The presence of penicillin G and other metabolites that have antimicrobial activity such as penicillin V and rugulosin can be suggested. P. chrysogenum IFL1 was able to produce a wide variety of antimicrobial compounds on agro-industrial residues, which makes the process ecologically friendly. |
---|---|
ISSN: | 1590-4261 1869-2044 |
DOI: | 10.1007/s13213-012-0532-6 |