On Weighted Least Squares Estimators for Chirp Like Model

In this paper we have considered the chirp like model which has been recently introduced, and it has a very close resemblance with a chirp model. We consider the weighted least squares estimators of the parameters of a chirp like model in presence of an additive stationary error, and study their pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sankhya. Series. A 2024-02, Vol.86 (1), p.27-66
Hauptverfasser: Kundu, Debasis, Nandi, Swagata, Grover, Rhythm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we have considered the chirp like model which has been recently introduced, and it has a very close resemblance with a chirp model. We consider the weighted least squares estimators of the parameters of a chirp like model in presence of an additive stationary error, and study their properties. It is observed that although the least squares method seems to be a natural choice to estimate the unknown parameters of a chirp like model, the least squares estimators are very sensitive to the outliers. It is observed that the weighted least squares estimators are quite robust in this respect. The weighted least squares estimators are consistent and they have the same rate of convergence as the least squares estimators. We have further extended the results in case of multicomponent chirp like model. Some simulations have been performed to show the effectiveness of the proposed method. In simulation studies, weighted least squares estimators have been compared with the least absolute deviation estimators which, in general, are known to work well in presence of outliers. One EEG data set has been analyzed and the results are quite satisfactory.
ISSN:0976-836X
0976-8378
DOI:10.1007/s13171-023-00313-x