Disentangling mappings defined on ICIS
We study germs of hypersurfaces $$(Y,0)\subset (\mathbb {C}^{n+1},0)$$ ( Y , 0 ) ⊂ ( C n + 1 , 0 ) that can be described as the image of $${\mathscr {A}}$$ A -finite mappings $$f:(X,S)\rightarrow (\mathbb {C}^{n+1},0)$$ f : ( X , S ) → ( C n + 1 , 0 ) defined on an icis ( X , S ) of dimension n . W...
Gespeichert in:
Veröffentlicht in: | Revista matemática complutense 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study germs of hypersurfaces
$$(Y,0)\subset (\mathbb {C}^{n+1},0)$$
(
Y
,
0
)
⊂
(
C
n
+
1
,
0
)
that can be described as the image of
$${\mathscr {A}}$$
A
-finite mappings
$$f:(X,S)\rightarrow (\mathbb {C}^{n+1},0)$$
f
:
(
X
,
S
)
→
(
C
n
+
1
,
0
)
defined on an
icis
(
X
,
S
) of dimension
n
. We extend the definition of the Jacobian module given by Fernández de Bobadilla, Nuño-Ballesteros and Peñafort-Sanchis when
$$X=\mathbb {C}^n$$
X
=
C
n
, which controls the image Milnor number
$$\mu _I(X,f)$$
μ
I
(
X
,
f
)
. We apply these results to prove the case
$$n=2$$
n
=
2
of the generalised Mond conjecture, which states that
$${\mu _I(X,f)\ge \text{ codim}_{\mathscr {A}_e}(X,f)}$$
μ
I
(
X
,
f
)
≥
codim
A
e
(
X
,
f
)
, with equality if (
Y
, 0) is weighted homogeneous. |
---|---|
ISSN: | 1139-1138 1988-2807 |
DOI: | 10.1007/s13163-024-00507-3 |