On the reduced Bernstein-Sato polynomial of Thom-Sebastiani singularities
Given two holomorphic functions f and g defined in two respective germs of complex analytic manifolds ( X , x ) and ( Y , y ), we know thanks to M. Saito that, as long as one of them is Euler homogeneous, the reduced (or microlocal) Bernstein-Sato polynomial of the Thom-Sebastiani sum f + g can be...
Gespeichert in:
Veröffentlicht in: | Revista matemática complutense 2024-09, Vol.37 (3), p.877-886 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given two holomorphic functions
f
and
g
defined in two respective germs of complex analytic manifolds (
X
,
x
) and (
Y
,
y
), we know thanks to M. Saito that, as long as one of them is Euler homogeneous, the reduced (or microlocal) Bernstein-Sato polynomial of the Thom-Sebastiani sum
f
+
g
can be expressed in terms of those of
f
and
g
. In this note we give a purely algebraic proof of a similar relation between the whole functional equations that can be applied to any setting (not necessarily analytic) in which Bernstein-Sato polynomials can be defined. |
---|---|
ISSN: | 1139-1138 1988-2807 |
DOI: | 10.1007/s13163-023-00478-x |