On the reduced Bernstein-Sato polynomial of Thom-Sebastiani singularities

Given two holomorphic functions f and g defined in two respective germs of complex analytic manifolds ( X ,  x ) and ( Y ,  y ), we know thanks to M. Saito that, as long as one of them is Euler homogeneous, the reduced (or microlocal) Bernstein-Sato polynomial of the Thom-Sebastiani sum f + g can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática complutense 2024-09, Vol.37 (3), p.877-886
Hauptverfasser: Castaño Domínguez, A., Narváez Macarro, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given two holomorphic functions f and g defined in two respective germs of complex analytic manifolds ( X ,  x ) and ( Y ,  y ), we know thanks to M. Saito that, as long as one of them is Euler homogeneous, the reduced (or microlocal) Bernstein-Sato polynomial of the Thom-Sebastiani sum f + g can be expressed in terms of those of f and g . In this note we give a purely algebraic proof of a similar relation between the whole functional equations that can be applied to any setting (not necessarily analytic) in which Bernstein-Sato polynomials can be defined.
ISSN:1139-1138
1988-2807
DOI:10.1007/s13163-023-00478-x