The $$\mathbb Z$$-genus of boundary links

The $$\mathbb Z$$ Z -genus of a link L in $$S^3$$ S 3 is the minimal genus of a locally flat, embedded, connected surface in $$D^4$$ D 4 whose boundary is L and with the fundamental group of the complement infinite cyclic. We characterise the $$\mathbb Z$$ Z -genus of boundary links in terms of thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática complutense 2023-01, Vol.36 (1), p.1-25
Hauptverfasser: Feller, Peter, Park, JungHwan, Powell, Mark
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The $$\mathbb Z$$ Z -genus of a link L in $$S^3$$ S 3 is the minimal genus of a locally flat, embedded, connected surface in $$D^4$$ D 4 whose boundary is L and with the fundamental group of the complement infinite cyclic. We characterise the $$\mathbb Z$$ Z -genus of boundary links in terms of their single variable Blanchfield forms, and we present some applications. In particular, we show that a variant of the shake genus of a knot, the $$\mathbb Z$$ Z -shake genus, equals the $$\mathbb Z$$ Z -genus of the knot.
ISSN:1139-1138
1988-2807
DOI:10.1007/s13163-022-00424-3