The $$\mathbb Z$$-genus of boundary links
The $$\mathbb Z$$ Z -genus of a link L in $$S^3$$ S 3 is the minimal genus of a locally flat, embedded, connected surface in $$D^4$$ D 4 whose boundary is L and with the fundamental group of the complement infinite cyclic. We characterise the $$\mathbb Z$$ Z -genus of boundary links in terms of thei...
Gespeichert in:
Veröffentlicht in: | Revista matemática complutense 2023-01, Vol.36 (1), p.1-25 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The
$$\mathbb Z$$
Z
-genus of a link
L
in
$$S^3$$
S
3
is the minimal genus of a locally flat, embedded, connected surface in
$$D^4$$
D
4
whose boundary is
L
and with the fundamental group of the complement infinite cyclic. We characterise the
$$\mathbb Z$$
Z
-genus of boundary links in terms of their single variable Blanchfield forms, and we present some applications. In particular, we show that a variant of the shake genus of a knot, the
$$\mathbb Z$$
Z
-shake genus, equals the
$$\mathbb Z$$
Z
-genus of the knot. |
---|---|
ISSN: | 1139-1138 1988-2807 |
DOI: | 10.1007/s13163-022-00424-3 |