Cadmium chronotoxicity at pituitary level: effects on plasma ACTH, GH, and TSH daily pattern
Cadmium is an endocrine disruptor that has been shown to induce chronotoxic effects. The present study was designed to evaluate the possible cadmium effects on the daily secretory pattern of adrenocorticotropin hormone (ACTH), growth hormone (GH), and thyroid-stimulating hormone (TSH) in adult male...
Gespeichert in:
Veröffentlicht in: | Journal of physiology and biochemistry 2010-09, Vol.66 (3), p.213-220 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cadmium is an endocrine disruptor that has been shown to induce chronotoxic effects. The present study was designed to evaluate the possible cadmium effects on the daily secretory pattern of adrenocorticotropin hormone (ACTH), growth hormone (GH), and thyroid-stimulating hormone (TSH) in adult male Sprague-Dawley rats. For this purpose, animals were treated with cadmium at two different doses [25 and 50 mg/l cadmium chloride (CdCl
2
)] in the drinking water for 30 days. Control age-matched rats received cadmium-free water. After the treatment, rats were killed at six different time intervals throughout a 24-h cycle. Cadmium exposure modified the 24-h pattern of plasma ACTH and GH levels, as the peak of ACTH content between 12:00 and 16:00 h in controls appeared at 12:00 h in the group treated with the lowest dose used, while it appeared between 16:00 and 20:00 h in rats exposed to 50 mg/l CdCl
2
. In addition, the peak of GH content found at 04:00 h in controls moved to 16:00 h in rats exposed to 25 mg/l CdCl
2
, and the highest dose used abolished 24-h changes of GH secretion. The metal treatment did not modify ACTH secretory pattern. Exposure to cadmium also increased ACTH and TSH medium levels around the clock with both doses used. These results suggest that cadmium modifies ACTH and TSH medium levels around the clock, as well as disrupted ACTH and GH secretory pattern, thus confirming the metal chronotoxicity at pituitary level. |
---|---|
ISSN: | 1138-7548 1877-8755 |
DOI: | 10.1007/s13105-010-0027-5 |