Nanomechanical Motion of Microcantilevers Driven by Ion-Induced DNA Conformational Transitions
In this paper, we report the nanomechanical motion of a microcantilever due to the conformational transitions of DNA molecules that are functionalized on the surface of a microcantilever. In particular, the conformational transitions of DNA molecules can be induced by the change of ionic concentrati...
Gespeichert in:
Veröffentlicht in: | BioNanoScience 2011-12, Vol.1 (4), p.117-122 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report the nanomechanical motion of a microcantilever due to the conformational transitions of DNA molecules that are functionalized on the surface of a microcantilever. In particular, the conformational transitions of DNA molecules can be induced by the change of ionic concentrations, which results in the bending deflection motion of a microcantilever. It is shown that a cantilever-DNA hybrid system is able to sense and detect the chemical environment changes such as pH change and/or ionic concentration change, and also that microscale device such as microcantilever can be actuated using molecular conformational changes. Our study provides a new insight into the development of a novel nano-bio-hybrid system based on microdevice coupled with molecular motors for chemical sensing as well as chemical-driven actuation. |
---|---|
ISSN: | 2191-1630 2191-1649 |
DOI: | 10.1007/s12668-011-0016-3 |