Design and Modeling of Polarization-Conversion Based all-Optical Basic Logic Gates in a Single Silicon Ring Resonator
The demonstration of all-optical basic logic gates using single silicon micro-ring resonator is presented in the paper. Based on the nature of the pump signal rather than its intensity, the polarization-conversion in ring resonator occurs with the response time of 0.2 ps. To validate the proposed mo...
Gespeichert in:
Veröffentlicht in: | SILICON 2020-06, Vol.12 (6), p.1279-1288 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The demonstration of all-optical basic logic gates using single silicon micro-ring resonator is presented in the paper. Based on the nature of the pump signal rather than its intensity, the polarization-conversion in ring resonator occurs with the response time of 0.2 ps. To validate the proposed model, the finite-difference time domain (FDTD) and Matlab simulation results are included in the report. The Q-factor and operational speed are also calculated to justify its utility. The ring parameters are optimized through numerical simulation to obtain the conversion of polarization in the ring resonator. The nature of the pump and source signal is responsible to obtain polarization conversion based all-optical switch and all-optical logic gates in the ring resonator. The design in this paper is simple and stable. |
---|---|
ISSN: | 1876-990X 1876-9918 |
DOI: | 10.1007/s12633-019-00204-7 |