Transformation behaviors and superelasticity of Ti50Ni48Fe2 shape memory alloy subjected to cold-rolling and subsequent annealing
The effects of annealing on the phase transformation behavior and superelasticity of cold-rolled Ti50Ni48Fe2 shape memory alloy were extensively investigated. Curves of temperature dependence of electrical resistivity reveal that both the cold-rolled and annealed specimens exhibit a B2→R→B19’two-sta...
Gespeichert in:
Veröffentlicht in: | Rare metals 2014-12, Vol.33 (6), p.652-656 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of annealing on the phase transformation behavior and superelasticity of cold-rolled Ti50Ni48Fe2 shape memory alloy were extensively investigated. Curves of temperature dependence of electrical resistivity reveal that both the cold-rolled and annealed specimens exhibit a B2→R→B19’two-stage martensitic transformation upon cooling and a B19’→B2 one-stage transformation upon heating, although the austenitic transformation temperature decreases with the increase of the annealing temperature. Tensile stress–strain curves show the critical stress for stress-induced martensite(rSIM)of Ti50Ni48Fe2 alloys decreases with the increase of annealing temperature due to the decrement of dislocation density caused by the recrystallization. As a result, the rSIM decreases. Upon a cold-rolling and annealing at 623 K for30 min, the Ti50Ni48Fe2 alloy exhibits excellent superelasticity with the maximum recoverable strain of 5.8 % at a loading strain of 7 %. In such a case, a complete superelasticity of 5 % can be obtained in the Ti50Ni48Fe2 alloy after deformation increasing to 15 cycles. |
---|---|
ISSN: | 1001-0521 1867-7185 |
DOI: | 10.1007/s12598-014-0265-8 |