Integrated vision-based GNC for autonomous rendezvous and capture around Mars
Integrated GNC (iGNC) is an activity aimed at designing, developing and validating the GNC for autonomously performing the rendezvous and capture phase of the Mars sample return mission as defined during the Mars sample return Orbiter (MSRO) ESA study. The validation cycle includes testing in an end...
Gespeichert in:
Veröffentlicht in: | CEAS space journal 2015-06, Vol.7 (2), p.143-157 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Integrated GNC (iGNC) is an activity aimed at designing, developing and validating the GNC for autonomously performing the rendezvous and capture phase of the Mars sample return mission as defined during the Mars sample return Orbiter (MSRO) ESA study. The validation cycle includes testing in an end-to-end simulator, in a real-time avionics-representative test bench and, finally, in a dynamic HW in the loop test bench for assessing the feasibility, performances and figure of merits of the baseline approach defined during the MSRO study, for both nominal and contingency scenarios. The on-board software (OBSW) is tailored to work with the sensors, actuators and orbits baseline proposed in MSRO. The whole rendezvous is based on optical navigation, aided by RF-Doppler during the search and first orbit determination of the orbiting sample. The simulated rendezvous phase includes also the non-linear orbit synchronization, based on a dedicated non-linear guidance algorithm robust to Mars ascent vehicle (MAV) injection accuracy or MAV failures resulting in elliptic target orbits. The search phase is very demanding for the image processing (IP) due to the very high visual magnitude of the target wrt. the stellar background, and the attitude GNC requires very high pointing stability accuracies to fulfil IP constraints. A trade-off of innovative, autonomous navigation filters indicates the unscented Kalman filter (UKF) as the approach that provides the best results in terms of robustness, response to non-linearities and performances compatibly with computational load. At short range, an optimized IP based on a convex hull algorithm has been developed in order to guarantee LoS and range measurements from hundreds of metres to capture. |
---|---|
ISSN: | 1868-2502 1868-2510 |
DOI: | 10.1007/s12567-015-0090-4 |