AGD-Net: Attention-Guided Dense Inception U-Net for Single-Image Dehazing

Image hazing poses a significant challenge in various computer vision applications, degrading the visual quality and reducing the perceptual clarity of captured scenes. The proposed AGD-Net utilizes a U-Net style architecture with an Attention-Guided Dense Inception encoder-decoder framework. Unlike...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive computation 2024-03, Vol.16 (2), p.788-801
Hauptverfasser: Chougule, Amit, Bhardwaj, Agneya, Chamola, Vinay, Narang, Pratik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image hazing poses a significant challenge in various computer vision applications, degrading the visual quality and reducing the perceptual clarity of captured scenes. The proposed AGD-Net utilizes a U-Net style architecture with an Attention-Guided Dense Inception encoder-decoder framework. Unlike existing methods that heavily rely on synthetic datasets which are based on CARLA simulation, our model is trained and evaluated exclusively on realistic data, enabling its effectiveness and reliability in practical scenarios. The key innovation of AGD-Net lies in its attention-guided mechanism, which empowers the network to focus on crucial information within hazy images and effectively suppress artifacts during the dehazing process. The dense inception modules further advance the representation capabilities of the model, facilitating the extraction of intricate features from the input images. To assess the performance of AGD-Net, a detailed experimental analysis is conducted on four benchmark haze datasets. The results show that AGD-Net significantly outperforms the state-of-the-art methods in terms of PSNR and SSIM. Moreover, a visual comparison of the dehazing results further validates the superior performance gains achieved by AGD-Net over other methods. By leveraging realistic data exclusively, AGD-Net overcomes the limitations associated with synthetic datasets which are based on CARLA simulation, ensuring its adaptability and effectiveness in real-world circumstances. The proposed AGD-Net offers a robust and reliable solution for single-image dehazing, presenting a significant advancement over existing methods.
ISSN:1866-9956
1866-9964
DOI:10.1007/s12559-023-10244-2