Fault-tolerant gait learning and morphology optimization of a polymorphic walking robot

This paper presents experiments with a morphology-independent, life-long strategy for online learning of locomotion gaits. The experimental platform is a quadruped robot assembled from the LocoKit modular robotic construction kit. The learning strategy applies a stochastic optimization algorithm to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolving systems 2014-03, Vol.5 (1), p.21-32
Hauptverfasser: Christensen, David Johan, Larsen, Jørgen Christian, Stoy, Kasper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents experiments with a morphology-independent, life-long strategy for online learning of locomotion gaits. The experimental platform is a quadruped robot assembled from the LocoKit modular robotic construction kit. The learning strategy applies a stochastic optimization algorithm to optimize eight open parameters of a central pattern generator based gait implementation. We observe that the strategy converges in roughly ten minutes to gaits of similar or higher velocity than a manually designed gait and that the strategy readapts in the event of failed actuators. We also optimize offline the reachable space of a foot based on a reference design but finds that the reality gap hardens the successfully transference to the physical robot. To address this limitation, in future work we plan to study co-learning of morphological and control parameters directly on physical robots.
ISSN:1868-6478
1868-6486
DOI:10.1007/s12530-013-9088-3