Global Dynamics and Bifurcations of Certain Second Order Rational Difference Equation with Quadratic Terms
We investigate global dynamics of the equation x n + 1 = x n - 1 a x n 2 + e x n - 1 + f , n = 0 , 1 , 2 , … , where the parameters a , e and f are nonnegative numbers with condition a + e + f > 0 and the initial conditions x - 1 , x 0 are arbitrary nonnegative numbers such that x - 1 + x 0 >...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2016-04, Vol.15 (1), p.283-307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate global dynamics of the equation
x
n
+
1
=
x
n
-
1
a
x
n
2
+
e
x
n
-
1
+
f
,
n
=
0
,
1
,
2
,
…
,
where the parameters
a
,
e
and
f
are nonnegative numbers with condition
a
+
e
+
f
>
0
and the initial conditions
x
-
1
,
x
0
are arbitrary nonnegative numbers such that
x
-
1
+
x
0
>
0
. The global dynamics of this equation consists of three bifurcations, two exchange of stability bifurcations and one global period doubling bifurcation. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-015-0148-x |