BaTiO3@Au nanoheterostructure suppresses triple-negative breast cancer by persistently disrupting mitochondrial energy metabolism
Abnormal metabolism has become a potential target for highly malignant and invasive triple-negative breast cancer (TNBC) due to its relatively low response to traditional therapeutics. The existing metabolic interventions demonstrated unsatisfactory therapeutic outcomes and potential systemic toxici...
Gespeichert in:
Veröffentlicht in: | Nano research 2023-02, Vol.16 (2), p.2775-2785 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abnormal metabolism has become a potential target for highly malignant and invasive triple-negative breast cancer (TNBC) due to its relatively low response to traditional therapeutics. The existing metabolic interventions demonstrated unsatisfactory therapeutic outcomes and potential systemic toxicity, resulting from the metabolic instability and limited targeting ability of inhibitors as well as complex tumor microenvironment. To address these limitations, here we developed a robust pyroelectric BaTiO
3
@Au core—shell nanostructure (BTO@Au) to selectively and persistently block energy generation of tumor cells. Stimulated by near-infrared (NIR) laser, the Au shell could generate heat to activate the BaTiO
3
core to produce reactive oxygen species (ROS) regardless of the constrained microenvironment, thus prominently inhibits mitochondrial oxidative phosphorylation (OXPHOS) and reduces ATP production to induce TNBC cell apoptosis. The therapeutic effects have been well demonstrated
in vitro
and
in vivo
, paving a new way for the development of metabolic interventions. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-022-4927-9 |