Molecular dynamics study of dipalmitoylphosphatidylcholine lipid layer self-assembly onto a single-walled carbon nanotube
Single-walled carbon nanotubes (SWNTs) are possible nano-injectors and delivery vehicles of molecular probes and drugs into cells. In order to explore the interaction between lipid membranes and carbon nanotubes, we investigate the binding mechanism of dipalmitoylphosphatidylcholine (DPPC) with SWNT...
Gespeichert in:
Veröffentlicht in: | Nano research 2009-12, Vol.2 (12), p.945-954 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-walled carbon nanotubes (SWNTs) are possible nano-injectors and delivery vehicles of molecular probes and drugs into cells. In order to explore the interaction between lipid membranes and carbon nanotubes, we investigate the binding mechanism of dipalmitoylphosphatidylcholine (DPPC) with SWNTs by molecular dynamics. In low concentration range simulations, the DPPC molecules form a supramolecular
two-layered
cylindrical structure wrapped around the carbon nanotube surface. The hydrophobic part of DPPC is adsorbed on the surface of the nanotube, and the hydrophilic top is oriented towards the aqueous phase. For higher concentration ranges, the DPPC molecules are found to form a supramolecular
multi-layered
structure wrapped around the carbon nanotube surface. At the saturation point a membrane-like structure is self-assembled with a width of 41.4 Å, which is slightly larger than the width of a cell membrane. Our study sheds light on the existing conflicting simulation data on adsorption of single-chained phospholipids. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-009-9097-5 |