Comfort and airflow evaluation in spaces equipped with mixing ventilation and cold radiant floor
In this work the comfort and airflow were evaluated for spaces equipped with mixing ventilation and cold radiant floor. In this study the coupling of an integral multi-nodal human thermal comfort model with a computational fluid dynamics model is developed. The coupling incorporates the predicted me...
Gespeichert in:
Veröffentlicht in: | Building simulation 2013-03, Vol.6 (1), p.51-67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work the comfort and airflow were evaluated for spaces equipped with mixing ventilation and cold radiant floor. In this study the coupling of an integral multi-nodal human thermal comfort model with a computational fluid dynamics model is developed. The coupling incorporates the predicted mean vote (PMV) index, for the heat exchange between the body and the environment, with the ventilation effectiveness to obtain the air distribution index (ADI) for the occupied spaces with non-uniform environments. The integral multi-nodal human thermal comfort model predicts the external skin and clothing surfaces temperatures and the thermal comfort level, while the computational fluid dynamics model evaluates the airflow around the occupants. The air distribution index, that was developed in the last years for uniform environments, has been extended and implemented for non-uniform thermal environments. The airflow inside a virtual chamber equipped with two occupants seated in a classroom desk, is promoted by a mixing ventilation system with supply air of 28 °C and by a cold radiant floor with a surface temperature of 19 °C. The mechanical mixing ventilation system uses a supply and an exhaust diffusers located above the head level on adjacent walls. |
---|---|
ISSN: | 1996-3599 1996-8744 |
DOI: | 10.1007/s12273-012-0093-4 |