Laser Enhanced Combinatorial Chemo-photothermal Therapy of Green Synthesis Gold Nanoparticles Loaded with 6Mercaptopurine on Breast Cancer Model
Purpose We tend to evaluated a method for loading 6Mercaptopurine (6MP) on green synthesized hybrid chitosan gold nanoparticles (AuNPs) forming 6MP-AuNPs nanocomposite for the first time in combinatorial chemo-photothermal therapy. Methods The AuNPs were synthesized using chitosan as a reducing and...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical innovation 2023-03, Vol.18 (1), p.144-148 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
We tend to evaluated a method for loading 6Mercaptopurine (6MP) on green synthesized hybrid chitosan gold nanoparticles (AuNPs) forming 6MP-AuNPs nanocomposite for the first time in combinatorial chemo-photothermal therapy.
Methods
The AuNPs were synthesized using chitosan as a reducing and capping agent. Different concentrations of 6MP were mixed AuNPs. Cells were incubated with 6MP and 6MP loaded AuNPs for 48 h and then exposed to laser.
Results
AuNPs and 6MP-AuNPs nanocomposite have small sizes of 18 ± 4 and 25 ± 5 nm and exhibit high stability with Zeta potential of 55.9 ± 6.3 and 57 ± 4 mV. 6MP-AuNPs nanocomposite irradiated with Diode Pumped Solid State (DPSS) laser showed a maximum inhibition in cell viability reaching 63% at 1.25 µM.
Conclusions
A hybrid chitosan gold nanoparticle is a powerful anti-cancer drug carrier as well as photothermal agent in combinatorial chemo-photothermal therapy. |
---|---|
ISSN: | 1872-5120 1939-8042 |
DOI: | 10.1007/s12247-022-09626-0 |