Almost Ricci Solitons on Finsler Spaces

In this paper, (gradient) almost Ricci solitons on Finsler measure spaces ( M ,  F ,  m ) are introduced and investigated. We prove that ( M ,  F ,  m ) is a gradient almost Ricci soliton with soliton scalar κ if and only if the infinity-Ricci curvature Ric ∞ = κ on M . Moreover, we give an equivale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2025, Vol.35 (1), Article 11
1. Verfasser: Xia, Qiaoling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, (gradient) almost Ricci solitons on Finsler measure spaces ( M ,  F ,  m ) are introduced and investigated. We prove that ( M ,  F ,  m ) is a gradient almost Ricci soliton with soliton scalar κ if and only if the infinity-Ricci curvature Ric ∞ = κ on M . Moreover, we give an equivalent characterization of (gradient) almost Ricci solitons for Randers metrics F = α + β , which implies that every Randers (gradient) almost Ricci soliton is of isotropic S BH -curvature. Based on this and the navigation technique, we further classify Randers almost Ricci solitons (resp., gradient almost Ricci solitons) up to classifications of Randers Einstein metrics F (resp., Riemannian gradient almost Ricci solitons) and the homothetic vector fields of F (resp., solutions of the equation which the weight function f of m satisfies) when F has isotropic S BH -curvature. As applications, we obtain some rigidity results for compact Randers (gradient) Ricci solitons and construct several Randers gradient Ricci solitons, which are the first nontrivial examples of gradient Ricci solitons in Finsler geometry.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01842-z