Growth of Subsolutions of $$\Delta _p u = V|u|^{p-2}u$$ and of a General Class of Quasilinear Equations
In this paper we prove some integral estimates on the minimal growth of the positive part $$u_+$$ u + of subsolutions of quasilinear equations $$\begin{aligned} \textrm{div}A(x,u,\nabla u) = V|u|^{p-2}u \end{aligned}$$ div A ( x , u , ∇ u ) = V | u | p - 2 u on complete Riemannian manifolds M , in t...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-02, Vol.34 (2), Article 44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove some integral estimates on the minimal growth of the positive part
$$u_+$$
u
+
of subsolutions of quasilinear equations
$$\begin{aligned} \textrm{div}A(x,u,\nabla u) = V|u|^{p-2}u \end{aligned}$$
div
A
(
x
,
u
,
∇
u
)
=
V
|
u
|
p
-
2
u
on complete Riemannian manifolds
M
, in the non-trivial case
$$u_+\not \equiv 0$$
u
+
≢
0
. Here
A
satisfies the structural assumption
$$|A(x,u,\nabla u)|^{p/(p-1)} \le k \langle A(x,u,\nabla u),\nabla u\rangle $$
|
A
(
x
,
u
,
∇
u
)
|
p
/
(
p
-
1
)
≤
k
⟨
A
(
x
,
u
,
∇
u
)
,
∇
u
⟩
for some constant
$$k>0$$
k
>
0
and for
$$p>1$$
p
>
1
the same exponent appearing on the RHS of the equation, and
V
is a continuous positive function, possibly decaying at a controlled rate at infinity. We underline that the equation may be degenerate and that our arguments do not require any geometric assumption on
M
beyond completeness of the metric. From these results we also deduce a Liouville-type theorem for sufficiently slowly growing solutions. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-023-01490-9 |