Mean Curvature Flow in Asymptotically Flat Product Spacetimes

We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold M × R , where M is asymptotically flat. If the initial hypersurface F 0 ⊂ M × R is uniformly spacelike and asymptotic to M × s for some s ∈ R at infinity, we show that a mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-06, Vol.31 (6), p.5451-5479
Hauptverfasser: Kröncke, Klaus, Lindblad Petersen, Oliver, Lubbe, Felix, Marxen, Tobias, Maurer, Wolfgang, Meiser, Wolfgang, Schnürer, Oliver C., Szabó, Áron, Vertman, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold M × R , where M is asymptotically flat. If the initial hypersurface F 0 ⊂ M × R is uniformly spacelike and asymptotic to M × s for some s ∈ R at infinity, we show that a mean curvature flow starting at F 0 exists for all times and converges uniformly to M × s as t → ∞ .
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-020-00486-z