Mean Curvature Flow in Asymptotically Flat Product Spacetimes
We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold M × R , where M is asymptotically flat. If the initial hypersurface F 0 ⊂ M × R is uniformly spacelike and asymptotic to M × s for some s ∈ R at infinity, we show that a mean...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-06, Vol.31 (6), p.5451-5479 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold
M
×
R
, where
M
is asymptotically flat. If the initial hypersurface
F
0
⊂
M
×
R
is uniformly spacelike and asymptotic to
M
×
s
for some
s
∈
R
at infinity, we show that a mean curvature flow starting at
F
0
exists for all times and converges uniformly to
M
×
s
as
t
→
∞
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-020-00486-z |