Sharp $$A_{1}$$ Weighted Estimates for Vector-Valued Operators
Given [Formula omitted], quantitative weighted [Formula omitted] estimates, in terms of [Formula omitted] weights, for vector-valued maximal functions, Calderón-Zygmund operators, commutators, and maximal rough singular integrals are obtained. The results for singular operators will rely upon suitab...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-03, Vol.31 (3), p.3085-3116 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given [Formula omitted], quantitative weighted [Formula omitted] estimates, in terms of [Formula omitted] weights, for vector-valued maximal functions, Calderón-Zygmund operators, commutators, and maximal rough singular integrals are obtained. The results for singular operators will rely upon suitable convex body domination results, which in the case of commutators will be provided in this work, obtaining as a byproduct a new proof for the scalar case as well. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-020-00385-3 |