Asymptotics of the Self-Dual Deformation Complex

We analyze the indicial roots of the self-dual deformation complex on a cylinder , where Y 3 is a space of constant curvature. An application is the optimal decay rate of solutions on a self-dual manifold with cylindrical ends having cross-section Y 3 , which is crucial in gluing results for orbifol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2015-04, Vol.25 (2), p.951-1000
Hauptverfasser: Ache, Antonio G., Viaclovsky, Jeff A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the indicial roots of the self-dual deformation complex on a cylinder , where Y 3 is a space of constant curvature. An application is the optimal decay rate of solutions on a self-dual manifold with cylindrical ends having cross-section Y 3 , which is crucial in gluing results for orbifolds in the case of cross-section Y 3 = S 3 / Γ . We also resolve a conjecture of Kovalev–Singer in the case where Y 3 is a hyperbolic rational homology 3-sphere, and show that there are infinitely many examples for which the conjecture is true, and infinitely many examples for which the conjecture is false.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-013-9452-3