A Splitting Theorem for Extremal Kähler Metrics

Based on recent work of S.K. Donaldson (J. Differ. Geom. 59:479–522, 2001 ; Q. J. Math. 56:345–356, 2005 ) and T. Mabuchi (Osaka J. Math. 41:563–582, 2004 ; Invent. Math. 159:225–243, 2005 ; Osaka J. Math. 46:115–139, 2009 ), we prove that any extremal Kähler metric in the sense of E. Calabi (in Sem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2015-01, Vol.25 (1), p.149-170
Hauptverfasser: Apostolov, Vestislav, Huang, Hongnian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on recent work of S.K. Donaldson (J. Differ. Geom. 59:479–522, 2001 ; Q. J. Math. 56:345–356, 2005 ) and T. Mabuchi (Osaka J. Math. 41:563–582, 2004 ; Invent. Math. 159:225–243, 2005 ; Osaka J. Math. 46:115–139, 2009 ), we prove that any extremal Kähler metric in the sense of E. Calabi (in Seminar on Differential Geometry, pp. 259–290. Princeton Univ. Press, Princeton, 1982 ), defined on the product of polarized compact complex projective manifolds is the product of extremal Kähler metrics on each factor, provided that either the polarized manifold is asymptotically Chow semi-stable or its automorphism group satisfies a constraint. This extends a result of S.-T. Yau (Commun. Anal. Geom. 1:473–486, 1993 ) about the splitting of a Kähler–Einstein metric on the product of compact complex manifolds to the more general setting of extremal Kähler metrics.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-013-9417-6