On an Inequality of Andrews, De Lellis, and Topping
Using the method of De Lellis–Topping (Calculus of Variations and Partial Differential Equations, pp. 1–8, 2012 ), we prove some almost-Schur type results. For example, one of our results gives a quantitative measure of how close the higher mean curvature of a submanifold is to its average value. We...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2015-01, Vol.25 (1), p.108-121 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the method of De Lellis–Topping (Calculus of Variations and Partial Differential Equations, pp. 1–8,
2012
), we prove some almost-Schur type results. For example, one of our results gives a quantitative measure of how close the higher mean curvature of a submanifold is to its average value. We also derive another sharp Andrews–De Lellis–Topping type inequality involving the Riemannian curvature tensor and discuss its equality case. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-013-9415-8 |