Conformal Compactification of Asymptotically Locally Hyperbolic Metrics

In this paper we study the extent to which conformally compact asymptotically hyperbolic metrics may be characterized intrinsically. Building on the work of the first author in (Bahuaud, Pac. J. Math. 239(2): 231–249, 2009 ), we prove that decay of sectional curvature to −1 and decay of covariant de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geometric Analysis 2011-10, Vol.21 (4), p.1085-1118
Hauptverfasser: Bahuaud, Eric, Gicquaud, Romain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the extent to which conformally compact asymptotically hyperbolic metrics may be characterized intrinsically. Building on the work of the first author in (Bahuaud, Pac. J. Math. 239(2): 231–249, 2009 ), we prove that decay of sectional curvature to −1 and decay of covariant derivatives of curvature outside an appropriate compact set yield Hölder regularity for a conformal compactification of the metric. In the Einstein case, we prove that the estimate on the sectional curvature implies the control of all covariant derivatives of the Weyl tensor, permitting us to strengthen our result.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-010-9179-3