Asymptotic Curvature of Moduli Spaces for Calabi–Yau Threefolds
Motivated by the classical statements of Mirror Symmetry, we study certain Kähler metrics on the complexified Kähler cone of a Calabi–Yau threefold, conjecturally corresponding to approximations to the Weil–Petersson metric near large complex structure limit for the mirror. In particular, the natura...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2011-04, Vol.21 (2), p.409-428 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the classical statements of Mirror Symmetry, we study certain Kähler metrics on the complexified Kähler cone of a Calabi–Yau threefold, conjecturally corresponding to approximations to the Weil–Petersson metric near large complex structure limit for the mirror. In particular, the naturally defined Riemannian metric (defined via cup-product) on a level set of the Kähler cone is seen to be analogous to a slice of the Weil–Petersson metric near large complex structure limit. This enables us to give counterexamples to a conjecture of Ooguri and Vafa that the Weil–Petersson metric has non-positive scalar curvature in some neighborhood of the large complex structure limit point. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-010-9152-1 |