Asymptotic Curvature of Moduli Spaces for Calabi–Yau Threefolds

Motivated by the classical statements of Mirror Symmetry, we study certain Kähler metrics on the complexified Kähler cone of a Calabi–Yau threefold, conjecturally corresponding to approximations to the Weil–Petersson metric near large complex structure limit for the mirror. In particular, the natura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2011-04, Vol.21 (2), p.409-428
Hauptverfasser: Trenner, Thomas, Wilson, P. M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the classical statements of Mirror Symmetry, we study certain Kähler metrics on the complexified Kähler cone of a Calabi–Yau threefold, conjecturally corresponding to approximations to the Weil–Petersson metric near large complex structure limit for the mirror. In particular, the naturally defined Riemannian metric (defined via cup-product) on a level set of the Kähler cone is seen to be analogous to a slice of the Weil–Petersson metric near large complex structure limit. This enables us to give counterexamples to a conjecture of Ooguri and Vafa that the Weil–Petersson metric has non-positive scalar curvature in some neighborhood of the large complex structure limit point.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-010-9152-1