Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences

We consider the family f a , b ( x , y )=( y ,( y + a )/( x + b )) of birational maps of the plane and the parameter values ( a , b ) for which f a , b gives an automorphism of a rational surface. In particular, we find values for which f a , b is an automorphism of positive entropy but no invariant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2009-07, Vol.19 (3), p.553-583
Hauptverfasser: Bedford, Eric, Kim, Kyounghee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the family f a , b ( x , y )=( y ,( y + a )/( x + b )) of birational maps of the plane and the parameter values ( a , b ) for which f a , b gives an automorphism of a rational surface. In particular, we find values for which f a , b is an automorphism of positive entropy but no invariant curve. The Main Theorem: If f a , b is an automorphism with an invariant curve and positive entropy, then either (1) ( a , b ) is real, and the restriction of f to the real points has maximal entropy, or (2) f a , b has a rotation (Siegel) domain.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-009-9077-8