Computer Forensic Using Lazy Local Bagging Predictors

In this paper, we study the problem of employ ensemble learning for computer forensic. We propose a Lazy Local Learning based bagging (L3B) approach, where base learners are trained from a small instance subset surrounding each test instance. More specifically, given a test instance x, L3B first dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shanghai jiao tong da xue xue bao 2009-02, Vol.14 (1), p.94-97
1. Verfasser: 邱卫东 鲍诚毅 朱兴全
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the problem of employ ensemble learning for computer forensic. We propose a Lazy Local Learning based bagging (L3B) approach, where base learners are trained from a small instance subset surrounding each test instance. More specifically, given a test instance x, L3B first discovers x's k nearest neighbours, and then applies progressive sampling to the selected neighbours to train a set of base classifiers, by using a given very weak (VW) learner. At the last stage, x is labeled as the most frequently voted class of all base classifiers. Finally, we apply the proposed L3B to computer forensic.
ISSN:1007-1172
1995-8188
DOI:10.1007/s12204-009-0094-3