Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures
This paper summarizes our research work on optoelectronic devices with nanostructures. It was indi- cated that by manipulating so called "general energybands" of fundamental particles or quasi-particles, such as photon, phonon, and surface plasmon polariton (SPP), novel optoelectronic characteristic...
Gespeichert in:
Veröffentlicht in: | Frontiers of Optoelectronics (Online) 2016-06, Vol.9 (2), p.151-159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper summarizes our research work on optoelectronic devices with nanostructures. It was indi- cated that by manipulating so called "general energybands" of fundamental particles or quasi-particles, such as photon, phonon, and surface plasmon polariton (SPP), novel optoelectronic characteristics can be obtained, which results in a series of new functional devices. A silicon based optical switch with an extremely broadband of 24 nm and an ultra-compact (8 μm -17.6μm) footprint was demonstrated with a photonic crystal slow light waveguides. By proposing a nanobeam based hereto optomechanical crystal, a high phonon frequency of 5.66 GHz was realized experimentally. Also, we observed and verified a novel effect of two-surface-plasmon-absorption (TSPA), and realized diffraction-limit-overcoming photolithography with resolution of-1/11 of the exposure wavelength. |
---|---|
ISSN: | 2095-2759 2095-2767 |
DOI: | 10.1007/s12200-016-0615-2 |